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2.6 

Figure 7. Ratio of dipole relaxation time of rigid polar molecules 
in naphthene solvents to that in other nonpolar solvents as a func
tion of reduced temperature. 

present correlation, which makes no explicit reference to 
viscosity, might have been expected to suppress this 
"naphthene effect". Even cursory inspection of Figure 
6 reveals, however, that solutions in naphthenes exhibit 
depressed reduced relaxation times in the present correla
tion as well. 

Expressing the naphthene effect as r*(naphthene)/ 
T*(pure liquid), one finds that the effect is primarily a 
function of the reduced temperature, regardless of the 
compound involved. A plot of r*A(naphthene)/ 
T*A(pure liquid) vs. T* in Figure 7 shows that the effect 
decreases with decreasing reduced temperatue and 
seems to vanish at f* = 0.45. This relation is, of 
course, a reflection of the molecule size effect noted by 
Hufnagel. A much larger range in absolute tempera
ture needs to be covered in experiments in order to 

obtain better insight into the possible origins of this 
effect. 

Other Work 

The importance of the moment of inertia for dipole 
relaxation had been noted earlier by Powles12 and by 
Hill.13 However, neither of these authors used his 
observations as a basis for a systematic correlation of 
dipole relaxation data. 

Conclusions 

The present treatment of the dipole relaxation was 
motivated by the need for methods to predict the rota
tion and diffusion rates for small molecules and mole
cule segments in polymeric liquids, where macroscopic 
viscosity is obviously meaningless as a correlating 
parameter. The success of the new correlation in 
handling Nujol solvent augurs well for its applicability 
in the intended field. 

A useful by-product of the work is the definition of a 
generalized reference system, deviations from which are 
more easily detected than has been possible before. 
Already some of these deviations suggested the intro
duction of a new "roughness" parameter into the con
sideration of the transport properties of liquids. 

A great deal of further work will be necessary to define 
the barriers to the external rotation of molecules in 
liquids more accurately. The present assumption that 
these barriers are proportional to the energy of vapori
zation is too crude to be satisfactory in the long run. 
Only after that problem has been solved can one con
sider the correlation as a safe method to estimate dipole 
relaxation rates from molecular structure data. 
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electronic contributions when the frequency of the ro
tated light is well outside of any of the molecular ab
sorption bands and outside the range of normal vibra
tional frequencies. Under those conditions the OR 
may be evaluated from the electronic motion only on the 
assumption that the nuclei are at rest at their equilib
rium configuration. 

In the present paper we will discuss an interesting 
example of a situation where the above theoretical de
scription is inadequate, namely, the observed optical 
rotatory power5 of molecules of the type CHDRiR2 with 
Ri and R2 arbitrary nonoptically active groups. It may 
be understood from symmetry considerations that 
molecules of the type CH2RiR2 are not optically active. 
It is generally agreed upon that the replacement of one 
of the protons by a deuteron does not change the equi
librium configuration of the nuclei, the electronic wave 
functions at the equilibrium configuration, and the vi
brational force constants. The only effect of the sub
stitution is due to the change in mass in the vibrational 
motion. We are therefore led to the conclusion that the 
OR of molecules of the type CHDRiR2 is due to the ef
fects of molecular vibrations, either directly through 
interactions between the nuclei and the radiation field 
or indirectly through the dependence of the electronic 
wave functions on the positions of the nuclei. 

We should mention an earlier attempt6 to derive a 
theoretical description of the optical activity of the deu-
terated molecules by means of molecular vibrations. 
We have some doubts with regard to the consistency of 
this theory since its derivation starts from Kirkwood's 
polarizability formulas7 which were obtained on the 
assumption that the nuclei are at rest in their equilibrium 
positions. We feel therefore that in the subsequent 
introduction of vibrational motion into Kirkwood's 
formulas some of the terms should vanish, thus not 
necessarily leading to correct results. 

General Theory 

In this section we shall present in greater detail most 
of our previous analysis.4 

We start with the theoretical expression for the 
specific rotation of a gas of identical molecules 

3ftc (», v) f* {0,0) 

{(^Ooip |^m>H^»vi"»I^Oo)} 
k 2 — k, (D 

The left-hand side represents the angle of rotation in 
radians when a beam of linearly polarized light passes 
through 1 cm of sample. We follow the usual conven
tion that 0o is positive for dextrorotatory substances. 
On the right-hand side, N is the number of molecules 
per unit volume, and c and h have their usual meaning. 
The letter 3 means "take the imaginary part." The 
operators are defined as 

p = 2>srs 
s 

m - £ ? m <r« X Ps) (3) 

(5) See, for instance, A. Streitwieser, Jr., J. R. Wolfe, and W. D. 
Shaeffer, Tetrahedron, 6, 338 (1959). 

(6) W. Fickett, J. Am. Chem. Soc, 74, 4204 (1952). 
(7) E. B. Wilson, J. C. Decius, and P. C. Cross "Molecular Vibra

tions," McGraw-Hill Book Co., Inc., New York, N. Y„ 1955. 

where es and ms are the charge and mass of particle s. 
rs and ps are the position and momentum vectors of par
ticle s, referred to a coordinate system that is centered 
on the center of gravity of the molecule. The functions 
^oo and \pnv are the total molecular eigenfunctions for 
the ground and excited states of the molecules, respec
tively, k\ = hcj\ is the energy of the incident photons, 
and the quantities knv = e„„ — too are the molecular 
excitation energies. In eq 2 and 3 the summations are 
performed over all particles, electrons and nuclei. 

Equation 1 can be rewritten as 

ô = —, ,— LEW*..2 - W]KiWPIiM- x 
*>C (MiO j*(00) 

<*001 M I tnv) + (ho I P I tnv) • (fnv I M I ^ 0 0 ) } (4) 

The operators are now defined as 

P = Pi - P2 

M = Mi - M2 (5a) 

Pi - fo* 
Za 

P2 = T1TfPa 

M i = ^ [ r , X P,] 

M2 = E§-[Ra x PJ 

(5b) 

(5c) 

where e and m are the charge and mass of the electron; 
Tj and Pj are the coordinate and momentum of elec
tron j , and Ra and Pa are those of nucleus a, all meas
ured again with respect to a coordinate system with the 
molecular center of gravity as its origin. Za is the elec
tric charge of nucleus a in terms of ( — e) and Ma, the 
mass of nucleus a. 

Equation 4 can be transformed into a very convenient 
form by means of several relationships given below. 
Let us first examine some matrix elements of P2. We 
can write 

M>o|P.|lfc,,> = 
K*n «oo) 

h 
£ M a ^ „ 0 j R o | \ U (6) 

We make use of the Born-Oppenheimer approximation 
and write 

^00 = F 0 ( r ,R) / 0 ° (R) 

$„ = Fn(r,R)f„n(R) 

(7a) 

(7b) 

where r denotes symbolically the electronic coordinates 
and R the nuclear coordinates. Then 

( 2 ) (^001R* I \ U = </o°(R)R.! (Fo(r,R) I F„(r,R))r |/,"(R))R 

(8) 

where (•••), means integration over the electronic 
coordinates and (• • • )R integration over the nuclear 
coordinates. Owing the the orthonormality of the elec
tronic wave functions F0 and Fn 

<*00| R a I l W = S o n ( / 0 ° ( R ) | R J / / ( R ) > (9) 
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And replacing (9) in (6) we obtain 

WoolPiIlW = 0 for « F̂  0 (10a) 

Wool P2 W™) = (ZO 0 IP 2 I / / ) for n = 0 (10b) 

An alternative proof of eq 10b is the following 

Fo(r,R)| X ^00Wr0" / = \ / o ° ( R ) 

5Fo(r,R) 
dR„ /AR)) + 

N/o°(R) 

For F0(r,R) real 

<F„(r,R)|F0(r,R))r m . <>•> 
™*>^? - ̂ ™«-

and 

We can now write 

<*00 I M, I l U = E -J EWoo|R„ |<W X 

W ^ | P « W « ) (13) 

and by similar arguments to those given above we see 
that 

Woo IM, I ^n,) = 0 f o r « * 0 (14a 

Woo i M21 ^ ) = </0°1M21/,»> for n = 0 (14b) 

Now let us examine some matrix elements of Px. We 
can write 

Woo I PiWo*) = 
(/„°(R) I <F0(r,R) IP11 F„(r,R))r |/„o(R))R (15) 

In the absence of an electromagnetic field, the electronic 
ground-state eigenfunction F0(r,R) can always be taken 
as nondegenerate and real. Therefore 

<F0(r,R)|P1|Fo(r,R))r = 0 (16) 

so that 

Woo [ PiWo.) = 0 (17) 

By means of a similar argument we find that 

WOOIM1WO^) = O (18) 

By making use of eq 10a, 10b, 14a, 14b, 17, and 18, we 
can finally write eq 4 as 

00 = <t>g + 0e (19) 

where 

47Te2TV 
^g = - V ! - E * J ( * I 2 - k*2r V o IP2 \fi I) • (Z^IM2 |/o) (20) 

•DC l 

and 

4>e = j r r L W ' w ^x) X 3c2 „^o 

In eq 20 the subscript 0 labels the vibrational ground 
state and / labels the excited vibrational states, all of 
them corresponding to the electronic ground state. <t>g 

represents the contribution due to the direct interactions 
between the nuclei and the radiation field. It can be 
evaluated exactly in a straightforward manner if the 
vibrations are harmonic and if the vibrational normal 
coordinates are known since it can be reduced to an ex
pression that is independent of the electronic wave func
tions. This result has some unexpected implications in 
the theory of infrared intensities, which will be dis
cussed elsewhere. 

4>e contains the electronic wave functions of the 
ground and excited states of the molecule. It can be 
transformed further by expanding the electronic wave 
functions in terms of the nuclear displacement coor
dinates with respect to the equilibrium configuration: 

(/>e = 0eCW + <£ell) + ^e12) + (22) 

It was shown4 that 0e
(o> is the electronic contribution, 

evaluated on the assumption that the nuclei are at rest 
and therefore independent of vibrations. The term 
0e(1>, which is linear in the nuclear displacement co
ordinates, vanishes in the harmonic approximation. 
The term <£e

(2) contains the principal contribution of 
vibrations to 0e. It is practically impossible to obtain 
reliable theoretical estimates of its magnitude from our 
present knowledge of electronic wave functions. 

It follows from the above discussion that the OR of 
molecules of the type CHDRiR2 is the sum of the con
tribution 4>s, which can be evaluated accurately in some 
cases, and of the contribution <£e

<2\ which cannot be 
calculated within any reasonable degree of accuracy. 
Both contributions depend on the frequency of the ro
tated light, and this dependence is such that the relative 
importance of <f>g with respect to 0e increases with de
creasing frequency. We intend to calculate the con
tribution to the isotope effect in optical rotatory power 
due to the term </>g only since we are unable to evalu
ate <£e

(2)- This calculation should lead to fairly ac
curate predictions for the optical activity at infrared 
frequencies and perhaps the low frequency part of the 
visible light. At higher frequencies we may possibly 
get a reliable theory for optical activity only by evaluat
ing both 0e and </>g. 

Applications of the General Theory 

The expression for <f>g is given in eq 20, where again 
P2 = EdZJAfJPa and M2 = E0(ZJAfn)R -XP,,, 
and Za, Ma, Ra, and P„ are the charge (in units — e), 
mass, position vector, and momentum, respectively, of 
nucleus a. The summation is performed over all nuclei 
in the molecule. 

We write R„ as 

R« — Ro + K (23) 

where R0,a is the equilibrium position of nucleus a with 
respect to a given origin, and 5„ is the displacement from 
equilibrium of nucleus a due to molecular vibrations. 
We use eq 23 to separate the operator M2 of eq 5c into 
two parts 

(R {Woo I P i W n . ) ' W J M 1 Woo)} (21) M 2 = M2
(0) + M2

( 1 ) (24) 

Journal of the American Chemical Society / 88:10 / May 20, 1966 



2139 

with 

M,<°> = Z(ZJMa)R0,a X P* 
a 

M,'1 ' = Z(ZJM0)K X P„ (25) 
a 

The contributions of M2
(0) and M2

(1) to <£g, according to 
eq 20, are denoted by <£g

(0) and <£g
(1), respectively. In 

earlier work it was anticipated that 0g
(1) is much smaller 

than </>g
(0) and consequently it was neglected. It will be 

shown here that <£g
(1) is exactly zero. 

In the harmonic approximation we may define the 
normal coordinates Qi, which are related to the Car
tesian coordinates ha by way of 

Qi = E E * A = 2X«-5a (/ = x, y, Z) (26) 
a i a 

where 5a,- and B( a» are the x, y, or z components of the 
vectors B;„ and 5„. The summation over a is to be 
performed over all N nuclei in the molecule, and / can 
have the values 1,2, . . . , QN — 6). 

The momentum Pi, which is conjugate to the co
ordinate Qi, may be represented by an operator 

Pi = -HbJbQi) (27) 

in the quantum mechanical description. We have 
therefore 

P* = 2 X 0 - P , (28) 
i 

and the operators P2 and M2
(0) may be written as 

P2 = ZZ(ZJM0)B^-P1 
l a 

M2
(0) = ZZ(ZJMJ[R0,* X B u ] -P , (29) 

The vibrational wave function is a product of func
tions that depend on one coordinate Qi only; the vibra
tional ground-state function f0 is therefore the product 
of the ground-state functions of all normal modes. It 
has been shown4 that the matrix elements (/o|Pa | / ;) 
are nonzero only if the state / represents the situation 
where one vibrational mode is in its first excited state 
and all other vibrational modes are in their ground states. 
If we use the notation fj for the wave function of the 
state where the normal modey is the one that is in its first 
excited state and where all other modes are in their 
lowest states we have 

(fo\Pj\fr) = SMKW' (30) 

where kj is the first excitation energy of mode j . It 
follows now from eq 20, 25, and 29 that 

0g
(o) = (27reW/3c 2)2>/(V - W)-1Rj (31) 

j 

with 

Rj = ZZ(ZaZB/MaMfi)Bla[R0,s X B^] (32) 
a /9 

By analogy with the definition of "rotatory strength" 
for an electronic state, we define Rj as the "vibrational 
rotatory strength" of vibrational mode;'. 

We will show now that <£g
(1> is exactly zero. It fol

lows from eq 25, 26, and 28 that M2
CI) is a linear com

bination of terms of the type Q1 P,>. It is easily veri
fied that 

(fAQPAfo) = o (33) 

and we see that the wave functions f,, which are the 
only functions that give nonzero matrix elements for 
the operator P2, lead to vanishing matrix elements for 
the operator M2

(1). Consequently <£g
(1) is zero. 

In order to evaluate the vibrational rotatory strengths 
Rj numerically, it is convenient to modify eq 32 some
what. It is customary in the analysis of molecular 
vibrations7 to introduce internal coordinates S1 as a 
starting point for the theoretical description. The 
normal coordinates Qi are then given by 

Ql — 2 J ( L ~ )l,mSm
 = 2-/(L~ ) m.lSm 

Sm — 2-iZSm,ai0ai = ZSm,a'^a ( 3 4 ) 
a i m 

Combination of eq 26 and 34 gives 

B,,„ = E (^ - 1 )+ - .* . . . (35) 

Hence 

R , = 

ZZ(ZaZJMaMS)ZZ(L-^n,/I-O
+,.A..JRo1* X 

a ft m n 

Sn.e] (36) 

which is the expression that we have actually used in our 
numerical evaluation of the OR. 

The following relations have proved to be helpful in 
our calculations. Let us introduce the matrix Ta,s 

whose elements are given by 

TmH"" = (ZaZfl/MaM^)sm,a-[R0,3 X S1,,,] (37) 

and also the matrix T, which is given by 

T = E E T * " (38) 

Equation 36 may now be written as 

R1 = {L-i.T-(L-i)+}„ (39) 

where L - 1 is the transformation matrix of eq 34 and 
(Lr1)+ is the transpose of L - 1 . It follows from the 
theory of molecular vibrations7 that the matrix L - 1 

satisfies the relations 

FG(L-1)+ = (L-O+A 

L+FL = A 

1+G-1L = E (40) 

where F and G are the potential and kinetic energy ma
trices in terms of the internal coordinates Sm, E is the 
unit matrix, and A is a diagonal matrix defined by 

A,.,' = (WW)S,,,, (41) 

We can now derive a summation rule for the vibra
tional rotational strengths R,. It may be recalled that 
for the contributions to the optical rotatory power from 
the electronic excited states the sum of the rotatory 
strengths Rn is equal to zero. It is somewhat surprising 
that the sum of the vibrational rotatory strengths R, 
turns out to be different from zero. From eq 39 it fol
lows immediately that 

ZRt = TlL-1^T-(L-1)+) (42) 
i 

where r {A} means the trace of the matrix A. Since the 
trace of a matrix remains invariant under a similarity 
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transformation we may derive from eq 40 that 

J^R1 = r j L - ' - T . e - ' - L ) = rJT-G-1} (43) 

It should be noticed that the matrices T and G - ! depend 
only on the geometry of the molecule and on the charges 
and masses of the nuclei. 

For kx » kh another useful relation can be de
rived. In that case we may neglect the term fc,2 in the 
denominator of eq 31 and write 

4>s = - (27reWS 2 /3c^ x
2 )E(^V^ 2 )^ (44) 

Using matrix notation and substituting eq 41 gives 

Jl(WV)R, = r{A-L-i-T.(L-o+} (45) 

From eq 40 it follows now that 

Jl{kM*)Ri = r{F-T} (46) 
3 

It is therefore possible to calculate the contribution 
4>g to the optical rotatory power of a given molecule 
from eq 44 and 46 if the frequency of the incident light 
is significantly larger than the normal vibrational fre
quencies of the molecule. In this case there is no need 
to calculate the normal frequencies and normal co
ordinates, but a knowledge of a reliable set of force 
constants is required for the determination of F. 

For light with frequencies comparable with the nor
mal frequencies of the molecule, 4>g can be calculated 
only if the complete set of normal frequencies and 
normal coordinates of the molecule is known. If they 
are not known but the corresponding quantities for the 
nonsubstituted molecule are available, then $g may be 
calculated with the aid of first-order perturbation 
theory.7 This approach is appropriate only to small 
changes in mass and it is not suitable for H to D sub
stitution. 

We take it that we know the normal frequencies and 
coordinates for a molecule that is described by the ma
trices F and G0. The normal frequencies are given by 
the set of eigenvalues 

M.o = {km* ( 4 7 ) 

and the normal coordinates are determined by the ma
trix L0

- 1 . We seek to determine the corresponding 
quantities ^ and L - 1 for a molecule that is described by 
the matrices F and G = G0 + SG. In the approxima
tion of first-order perturbation theory,7 which is valid 
when 5G is small, we have 

M, « M/[l + {L0-
1^BG-(Lo-1)*}„] (48) 

and 

{L-i}, ~ { L 0 - ' } , + ( L r 1 ) , 

{Li-1}* = Z^lL0-1U (49) 

where {A}* stands for the y'th column of the matrix A, 
and where the coefficients cjk are given by 

C111 = M * W - M,0)- 1ILo-1- 5G(Io- O+}tt (50) 

It may be pointed out that the above perturbation treat
ment is approximate to isotopic substitution, since in 
that case only the G matrix and not the F matrix is af
fected. 

If we substitute the results of eq 48-50 into eq 39 for 
the R1 we obtain 

Rj = Jl^W ~ M,0)-1 X 
k^j 

{Lo-^HLo-^+UJLo^-T-tLo-1)+},, (51) 

This expression may be useful to calculate the OR due 
to isotopic substitution of heavy nuclei. In the sum
mation the symbol k ^ j means that k and j should be
long to different representations of the unperturbed 
molecule. 

Calculations and Results 

A calculation of 0g for a given molecule requires an 
accurate knowledge of the normal frequencies and par
ticularly of the normal coordinates of the molecule. 
Even if experimentally determined normal frequencies 
were available for some of the molecules mentioned 
in ref 5, still a very reliable knowledge of the normal 
coordinates would be a prerequisite for a reasonably ac
curate calculation of <j>g. The situation here is similar 
to what happens in molecular electronic calculations: 
wave functions that reproduce some of the energies with 
small errors could lead to very poor results in calcula
tions of other quantities. Therefore, a calculation of 
4>g should have at its basis a very good set of force con
stants which not only reproduces the experimental 
frequencies but which should also be considered reliable 
from a more general viewpoint. 

With these considerations in mind we feel unable at 
this time to calculate <f>g with reasonable accuracy for 
any of the rather complicated organic molecules for 
which the OR has been measured. Instead we have 
selected for our calculations some molecules for which 
complete and quite accurate sets of force constants are 
available, namely, CHDBrCl, CCl35Cl87BrF, and CH-
DTBr, all of which have a tetrahedral arrangement 
around the carbon atom (see Figure 1). The sets of 
force constants that we used were obtained from several 
papers by Cleveland and his co-workers.8 

A program was written and used, which calculates 
the normal frequencies, normal coordinates, and the 
quantities R1 of eq 32 for a molecule from the matrices 
F and G, the ratios ZajMa, and the vectors R0jQ and 
Sn,a. The OR is then easily derived from the output 
of the computer calculation. Even though <j>g is a con
venient quantity in theoretical considerations, we de
cided to transform our results to a more customary form 
and to express them in terms of the specific rotation 
[a], which is related to </>g by way of 

[a] = 18OO0g/7rp (52) 

where p is the density of the pure substance. The 
specific rotation [a] represents then the angle of rotation 
in degrees per dm and per g/cm3. To avoid any pos
sible confusion with regard to the configurations of the 
molecules we calculated, the arrangement of atoms for 
each of these molecules is shown in Figure 1. 

The results of the calculations for CHDBrCl are re
ported in Table I. We also calculated [a] as a function 
of the frequency of the incident light, or, as it is usually 
called, the optical rotatory dispersions curve, by using 

(8) A. Weber, A. G. Meister, and F. F. Cleveland, J. Chem. Phys., 21, 
930 (1952); H. B. Weissman, R. B. Bernstein, and F. F. Cleveland, ibid., 
23, 544 (1955); R. L. Gilbert, E. A. Piotrowski, J. M. Dowling, and F. 
F. Cleveland, ibid., 31, 1633 (1959). 

Journal of the American Chemical Society / 88:10 j May 20, 1966 



2141 

A • 
i 
i -c 

> — 

/ 

/ 

Figure 1. Configuration of optically active molecules considered. [ a ] o* 

eq 31. This result is shown in Figure 2, where [a] for 
CHDBrCl is plotted vs. the wave number cox in cm - 1 of 
the incident light. The specific rotation [<X]D for the D 
line of sodium is 0.0002°. As a general check on the 
calculations, we evaluated X^-fy fr°m eQ 43 and ^1 

(kflh^Rj from eq 46. The results, namely, -0.0561 
and —0.164, respectively, are in agreement with the 
values obtained from Table I. 

Figure 2. Optical rotatory dispersion curve for CHDBrCl: specific 
rotation vs. wavenumber of incident light. 

Table I. CHDBrCl 

—Normal frequencies, co, cm" 
. Observed Calcd by 
Liquid Gas Cleveland 

Present 
calcn 

Vibrational 
rotatory 

strength, 
R, 1016 

g _ 1 cm 

3024 
2246 
1263 
1179 
866 
743 
707 
586 
228 

3029 
2251 
1268 
1188 
868 
746 
711 
591 
233 

3020 
2205 
1283 
1155 
878 
740 
704 
578 
227 

3021 
2204 
1287 
1149 
879 
737 
706 
579 

87 

- 0 . 0 0 1 3 
0.0003 

-0 .0131 
- 0 . 0 1 1 5 

0.0063 
- 0 . 0 4 6 0 

0.0255 
0.0255 

- 0 . 0 4 2 4 

Similar calculations of the R1 were performed for 
CCl35Cl37BrF and for CHDTBr; the results for both 
molecules are reported in Table II. We found that 
[a]D « 1 X 10-5 for CCl35Cl37BrF and [a]D = -0.0003° 
for CHDTBr. 

Table II 

W, 

c m - 1 

1065 
836 
783 
499 
386 
318 
230 
202 

50 

37BrF . 
R, 1016 

g_ 1 cm 

0 
-0 .0014 

0.0059 
0.0010 

- 0 . 0 2 1 0 
-0 .0637 

0.0201 
0.0715 

- 0 . 0 0 6 7 

w. 
c m - 1 

2047 
2235 
1866 
1289 
1204 
965 
773 
611 
237 

R, 10>6 

g _ 1 cm 

0.0024 
- 0 . 0 0 3 4 

0.0096 
0.0505 

- 0 . 1 1 6 5 
0.0298 
0.1402 

- 0 . 0 6 9 1 
- 0 . 0 0 9 9 

It may be seen from Table I that we were unable to 
reproduce the lowest eigenfrequency that was reported 
by Cleveland, et a/.,8 from Cleveland's force constants. 
The value that we obtained is different from the experi
mental value, and we have no explanation for this 
discrepancy. 

We suspect that it might considerably affect the OR 
for light of frequency comparable to the lower vibra

tional absorption frequencies of the molecule. It will 
probably affect [a] for light of about 1000 cm - 1 by 10 
or 15 % and [«]D by about 1 %. 

Discussion 

Our calculation of cj>g contains only two approxima
tions, namely, the harmonic approximation and the as
sumption that the optical rotation for a liquid or a solu
tion is the same as for a dilute gas. It is generally 
agreed that these two approximations are permissible 
and that they cannot lead to significant discrepancies. 

From the results in Tables I and II it may be noticed 
that the vibrational rotatory strengths vary considerably 
from one fundamental vibration to another, both in sign 
and in magnitude in what seems to us an unpredictable 
way. Therefore, all R/s should be known for an ac
curate determination of the OR, and this means that we 
ought to have an accurate knowledge of the force con
stants in order to determine the OR. 

There is some difficulty in comparing our theory with 
the experimental information5 since there are no ex
perimental data available for the molecules we calcu
lated and since the molecules for which measurements 
have been performed are inaccessible to theoretical 
studies. Nevertheless, we should note that for the 
molecules CHDXY (with X and Y different halogens) 
we calculated [<X]D to be of the order of 10 -4 and that the 
experimental values of [<X]D are of the order of 0.01 to 1 ° 
for molecules of the type CHDRiR2 (with Ri and R2 

organic radicals). This large difference between the 
two sets of [a]D values is due to either one of two reasons: 
(1) the replacement of the halogens by organic radicals 
causes a sharp increase in [a]o; or (2) the 0e

<2) con
tribution of eq 2 is dominant for visible or ultraviolet 
light. The second possible reason is not attractive from 
a theoretical point of view since </V2) cannot be evalu
ated, but unfortunately it seems the more likely one of 
the two reasons. 

However, it is relatively easy to modify the experi
mental approach so that it becomes compatible with 
our theory. It is easily verified that for lower frequen
cies of the rotated light, </3e

(2) is proportional with &x
2, 

and therefore it will rapidly decrease with decreasing 
Zcx. On the other hand, 0 g will become significantly 
larger if k\ becomes comparable with the kt. There-
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fore, the importance of 0e
(2) with respect to <j>g will 

diminish sharply with decreasing /cx, and at infrared 
frequencies the OR depends only on <pg and not on 
<£e

<2)- It may therefore be concluded that our theory 

gives an adequate description of the OR of molecules 
of the type CHDXY for infrared light and that we are 
not sure whether or not the omission of $e

C2) is per
missible for visible or ultraviolet light. 

Steric Effects on Hydrogen Bonding1 
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Abstract: Quantitative thermodynamic studies of the hydrogen bonding of sterically hindered alcohols and 
phenols with donors have been carried out. The enthalpies of hydrogen bonding between hindered hydroxy groups 
and donors are appreciable and are comparable to those with simple alcohols and phenols. The low equilibrium 
constants are mainly due to entropy factors. AJ^H and AH° are not linearly related in the sterically hindered sys
tems. Electrical effects of para substituents on the hydrogen bonding of /rara-substituted 2,6-di-?-butylphenols 
with donors have been studied and the results do not show a linear free energy relationship. 

I t has been known that sterically hindered phenols 
("kryptophenols") do not undergo characteristic 

reactions of simple phenols.2 Sterically hindered 
alcohols and phenols have also been found to be less 
associated than simple hydroxy compounds3,4 and the 
low equilibrium constants of self-association were found 
to be due to entropy factors, since the enthalpies were 
quite large in these systems. Recent studies of Bellamy 
and co-workers6-6 have shown that the relative strengths 
of hydrogen bonds between donors and mono- or 
di-o-alkylphenols are not greatly affected by the bulk of 
the alkyl groups except in the case of di-o-J-butyl-
phenol. These conclusions of Bellamy and co-workers 
were based on measurements of frequency shifts, 
AJ'OHJ and a few equilibrium constants for the inter
action between the hindered phenols with ethers. The 
hydrogen bonding of several hindered alcohols and 
phenols with a variety of donors has been reported in 
the present communication. 

Bellamy and co-workers5,6 assumed the enthalpy of 
hydrogen bonding to be proportional to the AJ>0H ; 
thus, on the basis of the low A^0H 2,6-dw-butylphenol 
was considered to form weak hydrogen bonds with 
donors. Our recent studies of the self-association of 
hindered alcohols and phenols4 and of hydrogen bond
ing between various donors and acceptors7 indicated 
to us that a linear Av0H-AH° relation does not hold 
when one considers hydrogen bonding of a variety 
of hydroxylic compounds with donors. It was there
fore decided to investigate the thermodynamics of 
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hydrogen bonding of hindered alcohols and phenols 
with a donor in detail to establish quantitatively the 
steric effects on the equilibrium constants, the fre
quency shifts, and the enthalpy of hydrogen bonding. 
In addition to examining steric effects in hindered 
phenols, electrical effects of para substituents on the 
hydrogen bonding of sterically hindered phenols have 
also been studied. 

Results and Discussion 

Hydrogen bonding data of several mono- and di-
or^o-substituted phenols with a few donors have been 
compared with the data on phenol in Table I. It can 
be clearly seen that in all the cases the equilibrium con
stants and the Av0H decrease with the increase in the 
bulk of the ortho substituents. Steric effects on 
equilibrium constants and Ay0H are also quite marked 
in the hindered alcohols (Table II). These results are 
similar to those of Bellamy and co-workers,5,6 but 
unfortunately the data could not throw any light on the 
strengths of the hydrogen bonds and the cause for the 
dimunition of equilibrium constants. 

Blue shifts of n-7r* transitions8 of carbonyl and thio-
carbonyl groups in the sterically hindered alcohols 
were also found to be considerably smaller than in 
simple alcohols. Since n-7r* blue shifts are propor
tional to hydrogen bond energies,7,9 this may be taken as 
evidence of weak hydrogen bonding between the ster
ically hindered alcohols and donors. However, in the 
present case, comparison of blue shifts is not valid since 
there will be little or no self-association of sterically 
hindered alcohols4 when used as solvents while other 
simple alcohols will be highly associated.10 Relative 
comparisons of hydrogen bond energies in terms of 
blue shifts would be possible only if the magnitude of 
self-association of alcohols is about the same. 
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